

Triple-Phase-Shift Controlled Dual Active Bridge Converter with Variable Input Voltage in Auxiliary Railway Supply

Martin Scohier, Olivier Deblecker, Carlos Valderrama

Electrical Engineering Division, Engineering Faculty, University of Mons

31, Bd. Dolez Mons, Belgium

martin.scohier@umons.ac.be

Acknowledgment

 $rac{c}{\sim}$ 100

80

60

40

20

Control complexity ↓

Soft switching condition is lost

High current stress

Dutput Power

The authors would like to thank C. Versèle, Alstom Belgium, for supporting this work.

Weight and volume of passive components 1

98

97

96

95

പ് 100

80

60

40

20

SPS modulation

Losses at rated conditions ↑

Front-end converter regulation

Dutput Power

References

[1] Krismer, Florian. "Modeling and optimization of bidirectional dual active bridge DC-DC converter topologies." (2010). [2] BS EN 50163 Railway applications. Supply voltages of traction systems 3 S. Shao, M. Jiang, W. Ye, Y. Li, J. Zhang and K. Sheng, "Optimal Phase-Shift Control to Minimize Reactive Power for a Dual Active Bridge DC-DC Converter," in IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 10193-10205. Oct. 2019

No sensitivity to supply voltage variation

98

97

96

95

Output Power 80

60

40

20

Weight and volume of passive components **↑**

Efficiency in severe conditions \uparrow

Modulation complexity \uparrow

Number of parts ↓

98

97

96

95

94